Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system.
نویسندگان
چکیده
Drug (Fenbufen, FBF)-loaded poly(D,L-lactide-co-glycolide) (PLGA) and PLGA/gelatin nanofibrous scaffolds were fabricated via electrospinning technique. The influences of gelatin content, fiber arrangement, crosslinking time and pH value of the buffer solution on FBF release behavior of the resulting nanofibrous scaffolds were investigated, with the corresponding FBF-loaded PLGA and PLGA/gelatin solvent-cast films as controls. The release rate of FBF was found to be increased with the increment of gelatin content for all the composite samples, and the FBF release rate of aligned nanofibrous scaffold was lower than that of randomly oriented scaffold. Moreover, the crosslinking treatment depressed effectively the burst release of FBF at initial release stage of PLGA/gelatin (9/1) nanofibrous scaffold. In addition, the pH value of the buffer solution could change the physical state of the polymer and affect the FBF release rate.
منابع مشابه
Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملPreparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملElectrospun polymeric nanofibers for transdermal drug delivery
Conventional transdermal drug delivery systems (TDDS) have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofiber...
متن کاملPreparation and evaluation of electrospun nanofibers containing pectin and time-dependent polymers aimed for colonic drug delivery of celecoxib
Objective(s):The aim of this study was to prepare electrospun nanofibers of celecoxib using combination of time-dependent polymers with pectin to achieve a colon-specific drug delivery system for celecoxib. Materials and Methods:Formulations were produced based on two multilevel 22 full factorial designs. The independent variables were the ratio of drug:time-dependent polymer (X1) and the amoun...
متن کاملElectrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional
Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2011